NSF/SRC Engineering Research Center

Environmental Implications

and Impact of Semiconductor

<u>Manufacturing</u>

Farhang Shadman

A University-Industry Collaborative Program

Founding Universities (1996)

- > U Arizona
- > U California Berkeley
- > MIT
- > Stanford

Other University members

- Arizona State U (1998)
- Columbia (2006 2009)
- Cornell (1998)
- Georgia Inst. of Tech. (2009)
- U Maryland (1999-2003)
- U Massachusetts (2006 2009)
- U North Carolina (2009)
- Purdue (2003 2008)
- U Texas Dallas (2009)
- Tufts (2005 2008)
- U Washington (2008-)
- U Wisconsin (2009-)
- UCLA (2011)
- North Carolina A&T (2012)
- Johns Hopkins (2012)
- Colorado School of Mines (2012)

Nano-manufacturing is not simply an extrapolation or scale-down version of the larger-scale manufacturing:

a) It has unique ESH and sustainability challenges.

b) It also presents opportunities for application of new tools and techniques.

Introduction of New Materials

Introduction of New Materials

Introduction of New Materials

Unique Properties of Nano-Particles

Treatment problem:

 Nano-particles <u>cannot</u> be effectively removed by conventional separation methods such as agglomeration, settling, and filtration.

Synergistic ESH impact of nano-particles:

- Active surface
- Selective adsorption
- Pore condensation (Kelvin Effect)

Consequence Consequence Concentration
Consequence
Facilitated transport
Consequence
Facilitated transport
Consequence
Cons

Unique Properties of Nano-Particles

a) Nano-particles in the gas phase 15ppb VOC; 40 nm particles

- b) Nano-particles in the wastewater
 - 10 ppb of Cu⁺⁺ in CMP wastewater results in 3x10⁶ ppb of adsorbed copper on 90 nm CeO₂ nano-particles
 - 10 ppb of PFOS in wastewater results in 2.8x10⁴ ppb of contaminated 10 nm carbon nano-particles

Toxicity of Nano-Particles

Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Nano-Particlces in CMP Process

Program Leader: Professor Ara Philipossian

- Major source of nano particle emission in S/C fabs.
- Costly and wasteful operation: For a typical 200-mm factory:
 - 6,000,000 liters of slurry per year
 - 300 metric tons of solid waste per year

Amount of slurry that does the actual polishing is often less than 10%

Integrated ESH-Friendly Planarization

Program Leader: Professor Ara Philipossian

Integrated Technology for CMP:

- Reduced slurry usage by 20-40%
- Reduced Cu in waste stream) by 25%
- Increased pad life by 20-50%
- Reduced diamond disc consumption by 20%
- Shortened CMP polish time by 20-50%
- Improved yield by 1-2%
- Developed ESH-friendly chemicals for ECMP

Impact of Nano-Scale Manufacturing on Resource Utilization

Water and Energy Use Reduction

Cleaning of Nano-Structures

Mechanism	Time Scale	Flow Effect
Boundary Diffusion	$d^{2}/D \sim 10 s$	Indirect, mild
Convection	d∕u ~ 1-3 s	Direct, strong
Desorption	$1/k_{d} \sim 0 - 10^{5} s$	No effect

Lowering water and energy usage Better metrology and process control

Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Needs:

Increased Use of Resources in Nano-Manufacturing

A Novel Metrology Technology:

Electro-Chemical Residue Sensor (ECRS)

Unique Characteristics:

- In-situ
- Real time
- On-line
- High sensitivity for small feature sizes
- Very short response time
- Total integration

A Novel Staged Rinse Process

<u>Major Paradigm Change:</u> <u>Application of New Manufacturing</u> <u>Concepts and Methods</u>

- **1.** <u>Subtractive:</u> Carve the structural details in a solid block or solid deposited layers
- 2. <u>Additive:</u> Place the final materials only in places where they are needed.

An Example of Subtractive Processing

Deposition and Patterning of Dielectrics

Deposition and Patterning of Dielectrics

Lead: Professors Karen Gleason (MIT), Chris Ober (Cornell)

Reducing Environmental Impact by Additive Processing

Lead: Professor Anthony Muscat

Feasibility of Additive Processing in Nano-Scale

Selective Atomic Layer Deposition (ALD)

Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Quantifying Environmental Impact and Sustainability

Factors that determine the sustainability of <u>a product</u>, <u>a process</u>, or <u>a manufacturing technology:</u>

<u>Summary</u>

Nano-manufacturing is not simply an extrapolation or scale-down version of the larger-scale manufacturing:

- a) There are unique ESH and sustainability challenges
- b) There are also opportunities for application of novel approaches and introduction of new tools/techniques.